Knowledge Based Engineering for System Design: Application on Aircraft On-Board Power System

Ingo Staack, Petter Krus, Linköping University, Div. of Fluid- and Mechatronic Systems

ingo.staack@liu.se

Agenda

- Need of System Design within Aircraft Conceptual Design
- Theory and Proposed Methodology:

Knowledge Based Metamodel Approach

- System Metamodelling
- Implementation & Use Case
 - 1. Hydraulic PFCS and actuator design
 - 2. Whole aircraft system

Conclusion

2

Future Aircraft Design: Configurations

- > Future fighter study:
 - single engine, TVC
 - Iow radar signature
 - instable configuration (maneuverability)

- > vertical stabilizer / tail-less configuration
- \rightarrow realistic?

3

- → control modes?
- \rightarrow needed systems?
- \rightarrow performance & benchmark?

Advanced/Modern designs: Configuration and Control System may not be separately developed

Historic Example: Concept $\leftarrow \rightarrow$ Systems Relation

Historical example of "unusual" concept solution: B-52 rudder:

- actuator reliability doubts: huge impact on whole concept
 - LDG integration(!)
 - structure, weight, size
 - operation
 - > systems
 - aerodynamic/geometry was driven by (absence & unreliability of) power control system
- Nowadays: power control systems are highly driven by aerodynamic/layout configuration

Civil Example: Performance Influence of System Control & Operation

Civil transportation: Conventional vs. Canard configuration

benchmark will be misleading without <u>detailed system knowledge</u>:

Conventional: aerodynamic penalty (hor. stabilizer down force)
<u>But</u> in reality:

- existence of a rear trim fuel/ballast tank
- ➤ → during conceptual design already (parts of) subsystems are defined
- \rightarrow impact on the benchmark

5

Need to handle this systems (information) during conceptual design

Target: Automated System Simulation

2nd WIEFP, São Paulo

I. Staack

Demand of multidisciplinary analysis:

straight forward solution: simulation model

- design exploration and cross-coupling effect investigation
- first instance of qualitative design "verification"
- fault- and de-rated function analysis
- way of communication
 Generation of a
 simulation model
 out of the project
 data

6

Example: Manual built whole a/c SimModel

Suggested <Knowledge Based> Model Generation Methode

7

KBS: System Knowledge Base

- KBE: Element Knowledge Base
- serve for the translation from meta-components towards the (real) components in library

2014-09-02

- III

KBS Definition

meta-system model:

- » "black box"
- defines system ports (input/output)
- contains

8

- KBSs (subsystems)
- KBEs (components)
- layout/connection rules
- > parameter setup rules

KBS Levels:

- . Fixed Ports, Static Layout
- II. Fixed Ports, Repetitive Layout
- III. Fixed Ports, Flexible Layout
- IV. Flexible Ports, Flexible Layout

I. Staack

E HE HE

Project data Requirements Design Compiler Simulation Requirements Simulation Requirements Simulation Program (standard) Component Ubray

KBL Definition

component metadata

- serve for the conncetion towards the used component library
- \succ contains:

9

- component library link/information
- port definitions
- parameter (tuning) informations

KBS Definition: Actuation Power System

(PFCS) hydraulic system layout development:

- statistic data
- expert knowledge
- certification req.

2014-09-02

Hydraulic System Example: Civil FAR/JAR 25 Aircraft

- > usually 3 hydr. systems
 - > 3 active
 - 2 + back-up
- > split-up into:
 - I. supply system
 - a. primary
 - b. secondary (back-up)
 - II. power transfer
 - III. PFC actuators
 - IV. SFC actuators

Metamodel / Layout Description of one Centralized Hydraulic System

2nd WIEFP, São Paulo

Sim. Model Instantiation of the KBS

KBS instantiation of:

hydraulicActuator(type= "linear" housing= "single" subtype= "balanced");

Result: Hopsan model file (XML)

2	system	@name	ame KBS_LinkServo						
		@typename	Subsystem						
		✓ objects	V	component (6 rows)		êname	<i>@typename</i>	parameters	
					1	4/3 Servo Valve	Hydraulic43Val ve	> parameters	
					2	C-type Cylinder	HydraulicCylin derC	> parameters	
					3	Gain	SignalGain	parameters	
					4	Subtract	SignalSubtract	>parameters	
					5	MechanicJLink	MechanicTransl ationalLossles sConnector		
			~		6	Angle Sensor	MechanicPositi onSensor	parameters	
			Y	systemport		Øname	hopsangui		
				(4 rows)	1	CON_inSignal	Dhopsangui		
					2	CON_inHydrPP	> hopsangui		
					3	CON_outHydrPT	> hopsangui		
^		~	~		4	CON_outMech_POS	> hopsangui		
		Connections							

13

System Level:

Parentsystem level:

2014-09-02

2nd WIEFP, São Paulo

I. Staack

Methodology Application: Whole A/C Simulation incl. PFCS

- Definition of the highest system level: KBS "aircraft system"
 - flat hierarchy of five **KBS**'s

2nd WIEFP, São Paulo

I. Staack

2014-09-02

Example Result: Simulation Model

2014-09-02

Project data

Requirements

Certification

Simulation

Model Code

(standard) Component Simulation Program

Design

105

2nd WIEFP, São Paulo

I. Staack

LiU

Conclusion & Future Work

- automated simulation integration process
- knowledge base approach
- backed by the XML language family
- Good
 adaptability

16

- design "compiler"
- requirement KBS translation
- configurator integration
- simulation model graphics

2014-09-02

2nd WIEFP, São Paulo

Fluid and Mechatronic Systems

Linköping University expanding reality

Ingo Staack ingo.staack@liu.se

www.iei.liu.se/flumes